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Accomplishments

The main accomplishments of the research cdrried out under this contract

are discussed in this section. The first year was devoted to computer coding

the rotational Hamiltonians for the various vibrational states in methane.

The second and third years were devoted to a new formulation of the model

Hamiltonian based on a jellium approximation for the molecule. Finally,

in the third year, consideration was given to a calculation of the vibrational

modes of simple molecules based on the electronic structure of these molecules.

This latter work is continuing under AFOSR grant #77-3130.

The calculation of the rotational levels of the high symmetry molecules

was carried out using standard techniques developed for simpler low symmetry

molecules. The computer code was written with the help of Samuel Safran

who finished a Ph.D. degree at M.I.T. and then obtained a position at Bell

Laboratories. It was shown'that the Wang representation for the angular

momentum matrices gives rise to a factorization of the rotational Hamiltonian

for all symmetrices of vibrational states. This general result is applied

to the methane molecule below.

The molecular vibration rotation energy levels for the methane molecule

are formulated making full use of the high symmetry of this molecule. The

vibration-rotation Hamiltonian in Td symmetry obtained by the angular momentum

matrix expansion. The use of the Wang representation of the [3 x (2J + 1)]

dimensioned matrices for the F 2 symmetry (v3 or v4) levels into four blocks.

In this fractorization, three of the four blocks have identical eigenvalue

and are associated with F1 and F2 symetry rotational levels whereas the

remaining block contains states of Al, A 2 and E symmetry.
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The block form of the rotational Hamiltonian coupling v1 and v4

vibrational levels is given by:

S0i 0 I I 0 0 1
00 x y z

IV I I 0 0 I+  1I +
00! x zI +0 0 10 0 0 0I

0 1 x yz

110oo~I + 0 0 IIZ

IVI 1 0 0 11 0 n+ 0
001 x y z

1 0 0 I I 0
xx Z y

10 11~ :1+ 0 0 1t
xx ~z

xx z y

I0 IV II + 0 0 11 +
Xx z y

I 0 0 1
yy x

0 I 0 110
YY x

yy x

0 IV 1 0
yy X

1 0
zz

0 10

0 IV
zz 0
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The numerical results for the grqund state of the methane molecule

are given in Appendix A. It was found that angular momentum values up to

J 40 could be solved with modest amounts of computer time.

The jellium model for high symmetry molecules was developed in order

to simplify the calculation of the coupled vibrations-rotation Hamiltonian.

This simplification is both in terms of limiting the number of parameters

for the Hamiltonian and in the diagonalization of the resulting matrix.

These questions together with a complete exposition of the model are the

subject of a paper which is included as Appendix B. This paper was submitted

to the Journal of Molecular Spectroscopy.

Finally, during the final few months of this contract, consideration

was given to a calculation of the vibrational frequencies of the methane

molecule. A force constant model for methane was developed and the evaluation

of the force constants based on the electronic structure was considered.

Our electronic state calculations are carried out using scattered wave X

programs developed at MIT. This work was carried out in collaboration with

Miss Iris Howard who is the holder of an IBM Graduate Fellowship. Work is

continuing on this project under an ANDSR grant,
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Appendix A. Ground State Rotational Levels for Methane

The rotational Hamiltonian for the methane molecule with Td symmetry is

diagonalized in a fortran program which is available on request. The progran,

uses as inputs the coefficients of the terms in the Hamiltonian and compute.

the eigenvalues for various values of angular momentum, J. The symmetry of

the eigenvector is also determined.

The program makes use of the Wang transformation on the angular momentum

matrices of the rotational Hamiltonian into four blocks. Because of the

symmetry imposed degeneracies, only two of these blocks need to be diagonalized.

The output from this computer program for the ground state of the methan

molecule is given below.
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A10O0A, A 1(02At A I04vO, At O06A , A100C.A v 10 1  ,..I O0.

0. "-26S677.1702 45'.60-137 63.76.'43, 0. .. 0,
A1004P,A1004, AI0001- ,A1001OD,AlOO12T

-1320O02.41(05 -409.7044321 0. 0. 0.
AIOO6PA100C, A 1001C,AI00l12C
424.8167 0. 0. 0.

AIOOSD, AlO010[L,vAlO012"t

0. 0. 0.
AIOOIOEAI0O12E

0. 0.
AOO12r

0.

BAND CENTcR OR N IUO= 0.00000 Al SYMMETRY ,...

J= 1 -. 1020340 Fl SYMMETRY

2

J= 2 -.478230514E407 E X(S4)= .0COO
J= 2 #318819707E07 F2 X(S4). ..,,

3
J= 3 ,7968836OIE1f07 F2 X(S4)= -1,000
J= 3 -. 238957147E+03 Fl X(SA.):-- 1.000
J= 3 .47780407Ei00 A- X(54): .0..

4
J= 4 -,158570692C+08 E X(54)- .000
J= 4 .111457Z5ETo2 AI X(S4) 1.003J=- 134., 13,),8 :) ? r- X (54) : i ,OOO
J= 4 .1034 "52',- L10, F2 •3.)
J= 4 - .5S6O,,9.,,. t , Fl X(S4)=: i .00Q

5
J= 5 921847870i[-,.09 Fl X(34)- 1.0
J=03 72 .O. l000 9 F2 X(4):- -1.00C,
J= 5 -. 21P63277Z5f[.: 07 Fl X ( 54 ) I .000;
J= 5 .1667","6f 109 E X (Z4). 0.000

6
J= 6 4999160 LE-09 Al X( S4= 1.000
J= 6 -. 2609021503:109 A2 X(34)= 1.000

6 -.4 5 24C' 3 3 0 9 E X(4)= .CC,
J= 6 .30006,,60- 09 F X(t;4);f 1. co
J= 6 ,246071404[:09 r2 X(S4".-• 1.0(,0
'J= 6 -40496063SC 0? F2 X(Z4)- 1.000

7
J= 7 .01413660[: L109 F1 X (S4)- 1,0"C
J= 7 .391116452IL:07 F2 X("4)- 1 .0
J= 7 -. 74,611,9..L07 F2 X (04)- I .000
J= 7 - 8553CR314 ' ;,. 09 Fl X(S4) - 1.00
J= 7 .557798A?'71109 E X(s4)-. .0(',.,
J- 7 .80191979It:I03 A2 XC4)- -1.OC



J0 -. J496U0U.L;L110 Al X(I;^.)- 1.000

J=~ 0 .132310: -;L110 r 2 X (S4) - - .0C0
J= 8 .678721404C409 ri X(S4)= l.COO
J= a8 .111, 13 33- cA 09 F2 X(54)= --1.003

J= 8 -. 1451249'jEil0 F1 X(S4):= 1.000

9
J= 9 .196640716E-i10 F2 X(S4)= -- 1 .0017;
J= 9 .166490114EF1O F1 X (S4 ) 1 . 000
J= 9 .17 43 220 30 Uf O' Fl ' . 0C
J= 9 -,23:'160;'64Eq!0 F2 X(-S4) 1.00Cc
J= 9 .247303927+10 F1 X(s4)- 1.000)
J= 9 2 20 200 b 0 ) EI 0 A-) X ( - 1 .000
J= 9 .94 4 45 3 *"?IC 0 9 A I X(S4) 1.00,)
J= 9 -,14767-1414U.40S E X(54)= .000

J=10 .129-7'.j826r-+10 Al X (c,4) 1 .00.0
J=10 -37209"'? -11E ;10 A 2 X(,"I 1) .00 "
J=10 -. 3 )10 '51 1( L" EX(. S4)-= 0. (0'
J=,10 . 3 15 7 1 -.2"?:) FI .0 2 A(E;4 ) 1 0 :
J=10 . 23 89 24 1 131 F1 X(-- 1 00~
J=10 . 126 4411O A-0, F1 X (S4 I.C :.
J=10 -.30015'L/V20EC7 F2 X (S4)~ 1.',
J=10 -.3819349"'C-110 F4 X(S4):7 1..0(

J: .4 5 3'j1 7 1-4-1.C0 F1 X(S4) ' 1.003
J= 11 3 * 3 1 '0 0 2 ' 1 1 C F2 X( SI 1 0 (0
J=11 .17 6 0:w:.F:;L10 FlI /V ,I 4) I .C00
J=11 -. 63 532.2 FF-2 0," F2 034)~ .0
J=1l -.570'51. IO'-6OE{110 F2 X('04)z! -1C,
J=11 --. 577563-1 MEf 10 F1 X (SA );-. 1.000
J=11 * 4240?7oJ06iF ; .0 E X(SA").= .0001
J=11 -- 3 5 4 03"01'3U{T0 E X (,4) .000
J=L 1 -.10729t0194LI-10 A2 X (S4 .1.OOC

12
J:-12 .b5l7507Fil 0 Al X(S4)= 1.000
J=12 s 491564,93C3:io A 2 X(S4)- -1.000
J=12 ,2040937'Oi.O c X(S4)~- --.000V
J=J12 9 827030777F4 10 E X ( S"):: .000
J= 12 0 36 0 "26 2.,UCI 10 A I X (S4 ) - 1.000
J= 12 6 109 27'.j0", 10 F1 X(u;,4). 1.000
J- 12 . 5 1 )172 CI 10 F2 X ( 2,) 1.COO
J-112 . 24 3 31O7 1 0V" -IJC F2 X(S4)= 1 .000
J=12 --$l21r91V.,' Ef 10 ri X(0'1) 1.000
J:=1 2 M-3 l7'L ', 0 - 10 F2 .0

J 12 -. 030127174LI10 ri X(G4)= 1.000
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/ 13
3=13 .874406074E 110 Fl X(S4)- 1.000
J=13 .76959071-rI 0 F2 X (S4): 1 - 0C0

J=13 .3 1849''0114 1 10 F2 X 4 ..000

J=13 .222430206C+10 
Fl X(S4)= 1.000

J=13 -.2 B2155940EI 0 Fl X(S4) 1.000

J= 13 -.11610;,-'0E111 F2 X(S4) = -. 000

J=13 -. 116559'241E+11 Fl X(S4)= 1.000

J=13 .822590656C- lO E X(S) . 000

J=13 .462965466Cf10 A2 X(S4)7= --. 03C,

J=13 -..23001421OC:10 Al X(S4)- 1.0J

J=13 -.303364557Cfl E X(S4) .00

14
J=14 .112542973E!11 E X(S4)- ""

"=14 .339221970L410 E X(S4)= .000

J=14 .141130443EV10 Al X(S4) 1.000

J=14 -.1512719772cf I I A2 X( 4) -1.000

J=14 1- 9,94 613 C. 11 E X(34) =  I Cc

J=t4 116741427EI11 F2 X(Z4):z -1.000

1=14 .10536932lE'I{11 Fl X(S 4) -: 1.0013

J=14 1590365-25C10 F2 X(S4): -1 000

J=14 .2 6261j'0'L1 F1 X(S4)= I.000

J=14 -.4 47676042EA F F1 X(S4)= 1 .000

J=14 -. 4B612.37E.4 10 F2 X (S4) -1.000

J=14 -.15862 3- " 'J"l F2 X(S4)= -1,000

15 F2 X(S4)= 1000J=15 .15 103 0-6 C VI I1 F

J=15 .140451) 2/ ,L 1 11 FIt X(S) 1.00,

J=15 .792364499'11(' Fl X(S4):... 1.000

J=15 .312449023L 10 F2 X(54) 1.000

J=15 .143743417[H:1O Fl X(S4)= 1.0"('
... "' 8 C '10F,- X (;- S4 . .. 000

J=15 -".7202-79345L 1 F X(I4)- .000

J=15 -" 211190943E'411 "x(4)1 .

J=15 -.2114505:4L i11 F1 X(S4):': 1.000
J1.. 55072 '271F. 111 A2 X ( )4 ): I .. .O00

J=15 .137 7 663 ... Al X (S4 I .00'

J=15 7107212 915) E I0 . X(54)- .00I

J=15 -. 702 ,6220!L'1-0 0 E X(S4)* .000

J=15 -,752107833E+10 A2 X(S4)m -1.000

16
J=16 ,192617151CI11 E X(S4) -.000

J=16 *1164190430E All Al X(S4 1.000

J=16 .309497042('C0 A2 X()4)= -1.000

J=16 *6963572-1l09 E X(S4)= -.000

J=16 -.2750247OS0L-11 E X(F4). -.000

J=16 -.276114S-,,* Cl 11 Al X(S4)== 1.0O0

J=16 .190192224EI F2 X(S4) -. 000

.1=16 .18 6 7471L,Ell 
Fl X (4) 1.000

.1=16 *991740IT7l'IOf 1l X(S4) = 1.000
316 .02911() I ..Li O [2 X(S4). • 1.000

J=16 
F.30,0 Ill 2 X(S4). 1.000

J=16 -.103L231.ill F1 X(S4)= 1.000
J=16 -. 1)66,,. 3 ,, 11 V-2 X(,4)= I,- 001.)

J=16 - .2759:2I697Cll FI X(S4) 7 1.00()

' i. . . ii • . . . .. ... ..
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J=17 .240WA1210CI11 F 2 X I'4~ -1.000
J17 .144/'3.0out F X(';4)~ 1.000

J=17 *100563412L-ill F 2 X(S4)- -1.000
J=17 o579367164E:4O9 F2 X(S4)z; -1.000
J=17 -.586027531209 Fl X(SA)= 1.000
J=17 -,1702337Ci+ll rl X(,-4)= 1.00o
J=17 -,35391S47to+ll 2 X('A) I -. 0 0 -
J=17 -3 5Al0 )' 2 C 111 F I X( S4 ) 1.000
J=17 -2471 -373MA- I I E X(S4)= .0 (0
J=17 .115tJO04~2ISMfl1 E X(S4)-- 0.0(0
J=17 .7 237911 12 F-41 0 A2 X CA) = --I1. C00
Jz-i7 -145'j30159E+ 11 Al X(S4)z. 1.000
J=17 -.1489607:37E4-11 E X (S )~ .000

18
J=12 .310692142EI 11 A 1, X ( 4Y ) = .030
J=19 . 3018916' iE 111. A2 X (SA ) z -1 001)
J~18 I 702967?77U.t 11 E X(SC40)-. " i
J-18 -1 ')629349 3 F I10 E X (S4< DO00,

.=07IV0 f~ 10 A I X(~) < 4 1 0
-. Ifl44702 i293Lt-11.1 A 2 X(4): -1.000
-.A04 471030? 7-,;. 11 c X (S4) -.000

J' 19J 32 2 5L:; '. 1 ri )((l 1) A1 .000 (
J~z j .3O8B149 1-101 W. I r2 X (0,4) 1000
j=-18 .1 V31 224U IE:111 F 2 .\<64) 1. cOO

J=S.126451277L1''411 Fl X(sA)> 1 .000
.~a84934,)'?YT 110 T-2 X ( S 4 1. Gi(

= I a206693961,",, . 10 Fl X (SA- I .003
J- I a .2003200o0>L' It Fl X (S4) 1.00C,
J~18 .2020 9 J5 f02, 1 11 P2 X(S4).: -1.000

-47129152t 11. F-2 X ( S4 > -2.0

19
j I.392510603PFll Fl X(S4)z: 1,000

j IY .4q819 46,WOA i 1. 2 (S41Y I -. 000
1, .2 9 ;;~:LI 1.i F2 XcL;4.. -1,000

J-- 19 .0 1 "? 1+11 Fl X(G4) : 1 .000
JZI 0 /1C~' 0 I iI F1 y U A)- !.000t
J= I1T -.43""3 /?9:V0.L + 1 X(54)- -I. (00
J= 19 --. 3Mj.?61 u i 0 U 1 X (S4) -1.000
J -19 - .261,86 1 Iri? 7k 411 F X( G4 ):: -1.000
J=19 5J/9EIlVISJ( I F2 X(S'l)7 -1-000

I E'1 119 l X(54)-- 1.000
J-19 .31434211'd11i I F XU )*'l .000

j I1? .24 306223~41 t-4* 2 W341) -1.00(0
J=19 .14 760Y4e,( + I Al X(S4) 1.000

J=r19 I I I c x ( s -A, ) .000
J=19 -626U3 '93 IL4 11 A2 )((S4)7- -1.000
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;i /

'J=20 ,4769734741 E X(S4)= -.000

J=20 ,26 034' ;cW 1 11 E X(S4)'- .000

J=20 , 179659692EI Al X(S4)= 1.000

J=20 -.776975190C410 A2 X(5 4). -. 000

J=20 -.91011066C110 E X(S4)= -.000

J=20 -.685350511E411 E X(S4)= -.000

J=20 -.685431192cfI1 Al X(S4)= 1.000

J=20 4815.2B067r-1l 
F2 X(S4)= -1.000

J=20 4715167 /E 11 F X(4)=- 1.000

J=20 293572516E111 
F2 X(S4) " -1.000

J=20 ,240210722EI11 
Fl X(V4)= 1.000

J=20 .110974219f.411 Fl X(S4):: 1.Ou"

J=20 959792473Ctl0 F2 X(S4) = -1-000

J=20 -,6961031L-1 10 F2 X(S4)') -- -.OC.,

J="20 -,3 4581457Ii11 Fl X(S4)- (.00

J20 -, 34688,53.J. 11 F2 X($4) = -O1.',
.-20 -,6.95377419C.111 Fl X(S4)- 1.0OO(

21 X(S4)= 10000
J=21 .582894913E+t F2 X, 0000

J=21 .578249652. 111 F1 X(S4)= I

.j .359541841E+11 Fl X(S4)-- .. .0"00

J-21 .298474010E+I1 F2 X(S4)= -.

J=21 .210333899 11i1 Fl X(S4)= , lo,.O0

J=21 *B768601f00EflO F2 X(S4)= -.I0".G
J= 11 -)147'..6C+ 11 F2 XtS4) -,0)(

J=21 -,13913c)65V-V 1. 11 Fl X 54

J=21 - 44130243VI - Fl X(S4)= .1000C

J=21 -,83391034z+1i. F2 X(S1)= , l (

J=21 -,833948763[4.-, l Fl X(S4)= 0oo0("

J=21 .587165296L 1 11 A2 X(S4)= -. 1000".

J=21 ,573131993.411 Al X(S4) .1000(C

J=21 .342013165E+I I E X (94)= -. I000(

j3=21 .I02977616E+ 1.1 X(S4)= -,1000C

J=21 .6 30669740EA-l0 
A2 X(S4)= -. 100)(

J=21 -,440483?04tL-Ili A1 X(S4)= .1000(

J=21 -, 4 4170701lTE i X(S4)= -. 1000(

22
J=22 ,700196362E'1'11 E X(S4)= .000

J=22 ,450596212-+11 Al X(S4):: 1.000

J=22 .35390662E-l11 A2 X(s4) = -1.000

J=22 , 2291625CI I 11 E X(S4)= -.000

J=22 -, 194280960E1- 1 E X(54)= .000

J=22 -, 20265 1851' 11 Al X(S4)= 1.000

-J22 -.100441116L-112 A2 X(S4)= -1.000

J=22 -100445213E+12 E X(S4)= -. 000

J=22 ,704424070r' 1 F2 X(F24) .. -1.000

J=22 .695047047 1l Fl X(14) ,000

3 22 ,42842907'IL 11 F X(.S4)= 1,000

J=22 .40145616Lt ll F2 X(54) = -I.000

J.2 ,*25072362,. 1 11 F2 X(54) = --1.000

J.22 .) 46IA / 44 F. -10 FI X( S4) 1.000

J=22 , .6 13 -297,L. I 10 f"."  X ( 54 ) -1,000

J-2.) 19 7 733I..1 11 F I X ( S4 ) J i 0

J22 - 1971 II FI X (' 4 ) 1 .0)

J=22 -.. 3 .I 1 F2 WA)" -1.000

J=22 100443471i:12 r2 X(54)= -1.000



.23
J=23 .84096073Efll F1 X(S4)= 1.000
J=23 .G33l76'34E+l1 F2 X(s4)= -1.000
J=23 -53320700 21C11 Fl X(34)= 1.00:)
J=3 4 7905,0A 11 1 F2 X(S4) I. GOO
J=23 .20642. ' O;:1 F2 X(1 *.oCC
J 23 *244654-,','1 il F1 X(S4)- 1 .00)0
J=23 .413619765Etl0 F2 X(S4) I .00,
J=23 -. ,780305E.11 F2 X(S4) --.-I0.OC
J=23 -.21490290EI11 Fi X(S4)= I.C

J~Z3 -. 8416 9' + 11 F2 X (14)z 1.C(
1 2 3 F21067-E11 X (rS4) I -, 0'.) 0
J=23 -. 11986601L0-A12 Fl X (S-1 1 ... )
3=23 *837273503Ci 11 E X(S.I)z C.3C

J=23 .50007235C0E-I 1 E X (S)- .0.
=23 .3,4033..4I 11 A2 X ( SY 4

J=23 ,682332]8s1E'1 10 Al X(S4)= 1.,,r-
J=23 .306103711E:I 0 E X(2 ) ).,0
1 --.3 -. 6839971 21E }-i L X L4>= .{'.

j;23 -. 684674733L41i. X(S4).. 1.(0.

24
J=24 .9980595,6E4+11 A X(S4) .000
J=24 .9074831721-II A2 X(S4)= - I,"00
J=24 61642920t-/A- ii E X(S4)= .00,
J=7 211 301460175EI- 3i E X(S4) -. 000
J=2,. .220663626Ef11 Al X( ): 1.000
J=24 -.3601159,J.,-l 1. 1 A1 X(S4 ) ,00
J=24 -. 365 5.,'009 E;I 1 E X(S4):- .000
J=24 -. 141 033074E-)12 E X(54)=: .000
J=24 -.141840127E12 Al X(S4) 1.000
,-24 .?94701234E,-ll Fl X (S4) -- 1.000
J=24 .99119267SLIII F2 X(S4)= -.-000
J=24 .63711 i8703"r.I 1 F2 X(54) .... -1.000
J=24 *57765;7C,32Z+ 11 F1 X(S4)- 1.000
J=24 .4091995l94E-11 F2 X (!4) = -1000
J=24 .271027010E+ll F1 X(S4)" 1.000
J=24 .120O5335S4E+10 Fi X(S4)= .1.000
J=24 -. 626606366EI09 F2 X($4):. --l.000
J=24 -. 36379:d060E-; l1 F2 X(S4): ).1. 000
J=24 -.83539737LOE.II - F1 X(S4)- 1.000
J=24 -.835733852EI. 11 F2 X(S4) - 1.000
J=24 -. 1418307113E.12 F1 X(S4) 1.000
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25 ia
3=25 .117210179E+12 Fl X(S4) 1.000
J=25 ,1165U2049EI-12 F2 X(S4)= -1.000
J=25 .746761122El11 F- X(S4)z -1.000
J=25 .71953M120E+11 ri X(S4)= 1.000

J=25 ,481866043E lI Fl X(S4).- 1.000
;J=25 .302761000E.11 F 2 X(S4)= -.1.000
J=25 .237143173Ef11 Fl X(S4)n 1.000
J=25 -. 484035867E+10 F2 X(S4)= --1.000

J=25 -,470876344E+11 F2 X(S4).. -1.000
J=25 -.473694162E411 Fl X(S4):= 1.000
J=25 -,100912746E+12 Fl X(S4)= 1.000
J=25 -. 166533072E+12 F2 X(S4):- --1.000
J=25 -. 166534033Ei12 Fl X(S4):::: 1.000
J=25 .I1689G6Y7Ef12 E X(S4).. .000

J=25 .769273615E+I X(S4) - 1..OCD
J=25 .680700680E+11 A1 X(S4) ) 1.000
J=25 .450195747L+11 E X(S4)z .000

J=25 -. 395339360LI10 E X(S4)=- -. 000
j=25 -. 643433399E-10 A2 X(S4):. -1.(00
J=25 -° 10088741SE-112 Al X(S4)= 1.000
J=25 -.100925J372UE,12 E X( S4)= .000

26
=26 .13669367-E3+12 E X(S4): ^0

J=26 .86923118SEII1 E X(S ) .00,

J=26 .615Y33310Z M1 Al X(S4)= .OC(

J=26 *310694375CEII A2 X(S4)::. 1.000
J=26 t2275 26262L 111 E X(S4): .000
J=26 -.590697665CIHI E X(S4) .000
J=26 "-.60106533C:11 Al X(S4)= 1.000
J=26 -. 194122343Ei12 A2 X(S4) :-.. - 1.000
J=26 -. 19412336c-Ei'12 E. X(S4).. -.000
J=26 .136964476E+12 F2 X(S4) -1.000
J=26 .136409442E12 Fi X(S4)= 1.000
J=26 .8962(0914EC11 F2 X(S4):n -1.000
J=26 .842536331EII F X(S4): 1.000
J=26 .54934039EII Fl X(S4)- 1.000
J=26 .491672472E1.II F2 X(S4)=: -1.000
J=26 ,252 13901 1 +III F2 X(SA) z:-.1.000
J=26 -°106400363E;11 Fl X(S4)= 1.000
J=26 -. 121108064EC11 F2 X(S4)= -1.000
J=26 -.599003936E1l1 rI X('s4)= 1.000
J=26 -,120650797E+12 Fl X(34)= 1.000
J=26 -. 120669420Et 1? F2 X(S4): -1.000
J=26 -. 194123024 I. F2 X(S4)= -1.000
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27
J=27 .15894,'"'1 t2' F 2 X(S4)= -1.000

J=-27 .153703067r -12 F1 X(S4).t- 1.000
J=27 .10501977-31:t-2 - X(34)= 1, OCO

J=27 .998283411C-11 F2 X(S4) ... 1.000

J=27 ,703032320E+11 Fl X(S4)= 1.000

J=27 .551638126C411 F2 X(S4): -1.CC,0

J=27 .252307636Ei411 F2 X(S4)- -I .000

J=27 ,210485661E+11 FE X(S4) 1.OC

-z27 -,195466939E4-1 FEl X(04)= 1.000

J=27 -,747139330E+11 F2 X(SA); -. 000

J=27 -,748844779I 11 Fl X(S4)- 1.000

11=27 -,142967940CA12 F2 X (S4) -. 1 • C

J=27 -. 224774191Ef1 2 F2 X(S4)= --1.000

J=27 -,224774671EI12 FI X(S4):- 1.000

J=27 , 1 918,21 lS )i,1.12 A2 X(S4):- -1.000

J=27 ,1 t84 41 20,C. 1"2 Al X (3 4) 1 .0C,

J=27 .10293 -4327 F+ 1 E X(S4)= .00

J=27 .60072 ..22E +l E X(04) .00)

27 ,4 5JSSO6,7.5El I A2 X (S 4).1 . 000

J=27 -. 183100'5-8E+ II Al X(S4)o 1.000

J=27 -. 20124449L -l I E X(S4)-. *00)

J=27 .42961092I-2 . X(S4)z- 007

J=27 -,142981624E412 A2 X(S4)= -1.000

20

3=2 a 183459'24U4-12 E X(4) . 000

J=28 ,1234SO3,471't 12 Al X(S4)=- 1 .00C

^: 1614'501CEP 12 X ( S4 ) . 0

J=28 * 774311401E411 I E X( 3 ) .1 . 000

28 ,2169971'75Eill E X(S4)< ,00f

J-. , 15759.4SIOE.111 Al X(4) 1.000

J28 -. 917224137E 411 A . 0

J=28 -919i89,32-Ii E X(S-4 )= --. 000

J=28 -. 2586491. 17L 12 E X(S4):.. .000

J=.28-2.59' I A X(S4):.. 1,000J=28 f,' ,:,,X (64., I..0
J.=28 .183669,'4,1',t . r- 2 X(S4)- -1.030

J=28 * 183' 14337! L'1- 1 F1 X (S4) 1 .000

J=20 .12143"330fH. Fl X(S4)= 1.000-

J=28 .1190 6',-$62212 F2 X(S4)= .1.000

J=28 ,81606'99E{ 111 F2 X(S4):: -.1.000

J=28 .63476450. 1711 Fl X(S4)z 1.000

J=28 *501709317t :'I1 2 X(S4) -.z --. - 000

.1=28 019492660.l 11 Fl X(s6 ) - 1.000

,1=28 .,2D9688901E t II F X(641: 1.000

J=28 -,29919761[l 11 F2 X(S4)- -1.000

J=28 -.9181136I F2 X(=4)= -1.000

J=218 -16799-234 2 F I X(4)): 1.000

J=28 - 16CO0727YEl 1 F2 X (S4) ... 1 .000

j =2 B506420614,12 E l X(S4)= 1.000

J W.- ,..0 4:.86.t] .
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29
J=29 *210930993E+12 F1 X(S4)= 1.000
j=27 ,210176075E12 2 X(S4)= -1.000

J=29 ,142050394E.12 Fl X(S4)!= 1000

J=29 *137622 '47E+12 F2 X(S4)= -1,000
J=29 o924343447E411 F2 X(S4)z: -1.000

J=29 .854456272E-l1 Fl X(S4)- 1.000

J=29 *5570s0.25E.-11 Fl X(S4).. 1;000
J=29 .165349770W.ll F2 X(S4):.. -- ,000
J=29 .126.S03724E}lli Fl X(S4)= 1.000

J=29 -. 412803006C+II F2 X(S4)=: -I.00C
J=29 -. 111258720I;12 F2 X(S4)= -1.000

J=29 -°IL!3S8642E+l2 V1 X(S4)= 1.00&

J=29 -,195924748L'1.2 Fl X(S4): 1,00t

J=29 -.295901754C+12 r2 X(S4)= .. 1.000

J=29 -.295901974E112 ri X(S4). 1,000
J-s .210760016E-12 E X(S4)= 0.00

J=29 .139852458Ef12 E X(S4)= 0.0C
J=29 4 98883 227.2E.11,I 11 X(S4)= I... .:

J=29 .7010235133E+ I Al X(S4).- 1.C*

J=29 .517816642E411 E X(S4): .OO)

J-29 - , 4080631 12EI 11 E X(54)... 0
J=29 -. 4204131 0?[7+1 A2- X (S 4 ... i00

J=29 -, 195917308 Li12 Al X(S A 1. OO.
J=29 -. 19592427E+12 E X(S4) .000t

30
J=30,241112S92C.-l12 Al X(S4)= 1.000
J=30 ,240649 35L.I.12 A2 X(S). -1.0')0

J=10 *161961377Et12 - X(SA)= -. 000

J=30 ,10246676E*f12 E X(S4)h -.000

J=30 .782752973C.11 Al X(S4)- 1.000

J=30 .I1328420E+l1 A2 X(S4):.. -4.000

J=30 .637098 9E.1-l0 E X(S4)z -.000

J=30 -.1332089D6EP12 E X(G4)= .000

J=30 -.133403251El-2 Al X(C4) 1.000

J=30 -. 336677546E112 A2 X(S4)=: -1.000

J=30 -.336677800E412 E X(S4)r -.00(

J=30 .240960407E412 Fl X(S4)=: 1.000

J=30 ,240006122E+12 F2 X(S4)i- -1.000

J=30 .1637586 6E+l.2 F2 X(S4): -1,000

J=30 .1596?493rE!-i12" Fl X(S4)= 1.000

J=30 111723525[I12 F2 X(34)= -1.000

J=30 .96005n657EI11 Fl X(S4)= 1.000

J=30 .597135576Ef11 Fl X(S4)n 1.000

J=30 ,523247744[ 11 F2 X(S4)= -1.000

J=30 .707213564EI10 F2 X(S4) -1.000

J=30 -,54080361 E+11 Fl X(S4)- 1.000

J=3o -.5 5 507074S'.411 F2 X(S4) ... -1.000

J=30 -. 133327 I57Ltt2 F-1 X(S4)= 1.000

J=30 -.2260 ,W,-27Et2 ri X(34)= 1.000

J=30 -.22609401IAS112 F2 X(S4)= -1.000

J=30 -,336677715{12 2 X(S4)= -'1000
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J., 4 1 2527C 112 Fl X(S4) 1.000
J=31 ,27386 4 '1-) 17 F"12 F2 X(S4)= -1.000
J=31 .1S70C34!Irf12 F2 X(S4)= --1.000
J=31 o18527115CE112 Fl X(S4): 1.000

J=31 .128022405EI12 Fl X(S4)= 1.000
J=31 .1109458653Ei12 F2 X(S4)" -1.000
J=31 .862753010EI11 Fl X(S4)= 1.000
J=31 *544452934LE11 F2 X(S4)= --1.000
J=31 .8149199151I-0' F2 X(S4).. 1.000
J=31 -. 176646893EiHO Fl X(S4)= 1.000
J=31 -. 713671256E+11 Fl X(S4)= 1.000
J=31 -. 158030336E+12 F2 X(S4)= -1.000
J=31 -. 15E096367E+12 F 1 X(S4) 1.000
J=31 -. 2610S0628E-f12 F2 X ( 34 ). -1.000
J=31 -. 381111916E.-12 F2 X(S4) -1.000
J=31 -. 3811120371-f12 Fl X(S4)= 1.000
J=31 .273995177E412 E X(S4)= .000
J=31 . 1 S/42531E+ 12 A2 X(S4):.. -1.300
J=31 .1032330731M2 Al X (S4)z: 1.000
J=31 .123060772fE12 E X(S4)= .000
J=31 .590102;04C.i 1 E X(S4); .... .000
J=31 .46TZ24709E11 A2 X(S4)= -.. 000
J=31 -.708632M10E{1, 1 Al X(S4)= 1.000
J=31 -. 716142332E' I11 E X(S4)= .000
J=31 -. 261040654[E2-12 E X(S4)= .. 000
J=31 -.261054575E 5 -.15 A2 X(S4) 1.000

32
J=32 .3102530741" ;!'2 E X( S) .-. 000
J .. 1303,6 . ... 12 - X(S.)-'-n .000
J=32 , 15001 P^"'., , L I : :  Al X(S.)w 1.000
J =-3 .124396331 1-12 A2 X (S ). .1): .000

J=321 .907644994L:11 E X(S-) .000
J=32 -. 971900490' ,1.0 E X(S4):= .000
J=32 -. 1300471201 II1 Al X(Stl)= 1.000
J=-.' 1-. 1 3 C04,"L.1 12 A2 X(4 ).-. 1.000

J=32 -,185704157'71.12 E X(S4) .. -. 000
J=32 -.429327779L 112 E X(S4)= .000
J=32 --. 42932790U'Jr I" 12 Al X(S4)= 1.000
J=32 s310366 6 90 1 12 F2 X(S4). 1.000
J=32 s310140207L[',i.12 F1 X(54)- 1.000

S .21464920E- 12 F2 X(S4)= -.1.000

J=32 ,2113560" 6{12 ri X(S4)= 1.000
J=32 .1439715fl I .2 FI X(S4)= 1.000

J=32 *136,3914[ .1 2 V2 X ( "41) -1.000
J=32 .96P1a20j69E 1 11 F2 X(S4):= -.1.000
J=.3 .5618060797F I1 Fl X(54)= 1.000
J 32 .47341'Ot0OL;11 F2 X(S4)- .. 1.000
J=32 -. 100611574zf; 11 Fl X(S4)=" 1.000
J=3" -. a97',333071r:I11 F1 X(S4). 1.000
J=32 -. 901461905E{11 F2 X (4): -1.000

-.3o 2 --. 1056321431- f 12 F2 X(S4). -1.000
J=32 -. 2995410/9Ll 12 Fl X(S4)=: 1.000
J=32 -. 298543974(1:12 F2 X(C4)= .1.000
J=32 -. 429327922[ 112 F1 X(S4)=: 1.000
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33
J=33 o349878456E-112 F2 X(S4)= -1.000
J=33 °349787757E4.12 Fl X(S4)= 1.000
J=33 ,244017566CI.12 Fl X(S4)=: 1.00C
J=33 9241149055E112 F2 X(C4)= --1.000
J=33 s160279504C'1112 Fl X(S4)= 1.00)
J=33 *1534%7932[ 112 F2 X(:4 -1.000
J=3' ,105244540EI.- F2 X( 4) -1.000
J=33 ,945059033IL11 Fl X([4)= I.0CC
J=33 .466603532L' 11 F X(S4)= 1.000
J=33 -. 22380600L -11 F2 X(SA)= -1.-.00
J=33 - .2420208J5E 11 Fl X(S4)= 1.000
J=33 -. 1111055S44Ei.12 F2 X(S4)= -1.000
J=33 -.216300305D.12 F2 X(S4)= -1.0C0
J=33 -,216333729E+12 F! X(S4= I.GO0
J=33 -.339496483Et'12 Fl X(S4)- 1.000
J=33 -,481434681E412 F2 X( 34). 1.000
J=33 -o401434742E-12 Fl X(34)=. 1.000
J=33 .349968.Zc,6C412 A2 X(S4) =; -1.000
J=33 .349696563EI12 Al X(S4)= 1.000
J=33 .242673037E412 E X(S4)= .000
!J=33 .160365079E- 12 E X(S4)= -.000
J=33 I121552902E+2 A2 X(S4)- -- 1.000
J=33 *551021237EI1"11 Al X()4)= I,00
J=33 .434158237-i11 E XC4) .000
J=33 -. 110949334E'12 E X(S4)= -.000
J=33 -. 111414023r:12 A1 X (S ..0C0
J=33 -,339494357E+12 A1 X(S4): 1.000
J=33 -,339497546E.!.12 E X(S4)= .000
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Appendix B. Jellium Model

The jellium model is developed theoretically in the preprint which is

included below. A computer program based on this model was also written. Ho'.-

ever, the program used to test the model for the coupled v2, v4 bands In

methane, as well as the experimental data set used to determine the goodness

of fit was that of Professor Alan Robiettle of the Department of Chemistry,

Reading University. Reading, England.

I-i
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Abstract

Group theoretical techniques are employed to derive the form

of the most general phenomenological rotational Hamiltonian associated

with a given molecular vibrational state or set of states. The

expansion is given in terms of the symmeirized products of angular

momentum matrices. A perturbation expansion for the rotational

states is developed based on tetrahedral distortions of a spherically

symmetric distribution of mass. This jellium approximation

significantly reduces the number of parameters in the rotational

Hamiltonian. The specific application to methane is indicated.
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I. Introduction

Phenomenological Hamiltonians are widely used in physics to model

physical systems. Their introduction is motivated by either (1) an attempt

to model an extremely complex many-particle system by a simple one-particle

mathematical formulation or (2) the necessity of refining theoretical models

to fit a multitude of precise experimental data. An example of the first

point is the introduction of pseudopotentials in the theory of the electronic

structure of solids, whereas an example of the second is the use of phenomeno-

logical rotational Hamiltonians to fit the IR and Raman spectra of molecules.
2

The development of these Hamiltonians has traditionally made extensive

use of symmetry in determining the functional form. The high symmetry molecult

require extensive use of group theory for the primary reason that symmetry

imposes mode degeneracies which must be explicitly included in order to

successfully model the vibrational and rotational states. The extensively

3
studied molecule with Td symmetry, CH4, will be explicitly considered in

this paper. However the higher symmetry molecules with 0h synmetry, e.g.

SF6 or TIF 6 can be treated by exactly the same formalism as that developed here.

Tre methane molecule has 4 distinct vibrational frequencies labelled by

Vl9v 2 V3 and v4' corresponding to the 9 degrees of vibrational motion,
2

which consist of on( non-degenerate vI mode with A 1 symmetry, two degenerate

v2 modes with E symmetry and two three-fold v3 and v4 modes with F2 symmetry.

In a,' rtion to these symmetry-imposed degeneracies (which require special

consideration in the derivation of the phenomenological Hamiltonian), there

are near-degeneracies that are accidental. Two examples of such near-

degeneracies in methane are: (1) v2 and v4 , and (2) v1 , v3 the overtones

(2v2 ) and (2v4 ) and the combination modes (v2 + v4). The fitting of the

vibronic modes In CH4 is greatly perturbed by the interactions between the

levels of these degenerate and nearly degenerate states.
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This paper addresses the formulation of the phenomenological Hamiltonian

for the rotational-vibratlonalstates in a high symmetry molecule and develops

a perturbation expansion based on deviations from spherical symmetry. This

formulation makes it possible to treat a collection of degenerate and nearly

degenerate levels using the minimal number of terms required by symmetry

considerations in the phenomenological Hamiltonian. Using the functional form

based on group theoretical considerations, the coefficients of the model

Hamiltonians can be evaluated by comparison with experiment. Though application

is made to CH4 having modes with AI9 E and 2F2 symmetries, the same formulation

is easily extended to other molecules with Td symmetry, such as Ni(CO)4 having

modes with 2AI, 2E, F1 and 4F2 symmetries. The extension to high symmetry

molecules with different cubic symmetries can also be carried out based on the

functional form presented in this paper.

The general symmetry considerations which apply to all phenomenological

Hamiltonians are discussed in Section II and these principles are applied to

vibrational-rotational Hamiltonians for Td symmetry molecules. Section III

develops a perturbation expansion based on the spherically symmetric

phenomenological Hamiltonian for "jellium" which allows one to greatly reduce

the number of expansion coefficients. Section IV makes the application of the

perturbed jellium model to the methane molecule and finally Section V gives

a brief summary of the current paper.
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II. General Theoretical Development

A phenomenological Hlamiltonian d (0, 2, ... 0 ) In general depends

on the operators 0. and is a scalar with respect to the symmetry operations

of the symmetry group of the system. Thus if R is any symmetry operation

(including time inversion), that leaves the Hamlitonian invariant; then

R F(1el 02' n ( a 2'n "  (1)

The invariance ofAr under the symmetry operations R does not otherwise

restrict the form ofRFit so that R I_ can be a matrix, which is the case

if Xr I represents the rotations of a vibrating molecule. The operators e.1

are also not necessarily scalars under the symmetry operations R. These

apparent complexities can be systematically handled by elementary group

theoretical considerations, and this is the focus of the present paper.

The symmetrized form of Fr1 (01' 2P ...6 . n ) can be based on the

4
assumption that its functional form is a power series in one or more operators.

This assumption is not necessary, but is convenient because a function of an

operator f(O)T is usually defined in terms of a power series expansion in the

operator, i.e. {f(O) + f'(O)O +...}. From this point of view, the Hamiltonian

is written in terms of a complete set of basis matrices B(Fi ) which transform

as the irreducible representation i

FP r I ' 02' 0 n.) = E{B(Fi), (oil ...' n} (2)

where the Api(Ol... n) are symmetrized polynomial functions of the operators

01' 82' '0n that transform according to the irreducible representation I .

The basis matrices B( i ) can be classified according to the irreducible

representation of the symmetry group of the molecule and the scalar combination

of B and A is taken in Eq. (2). Time reversal symmetry must also be explicitly

considered, so that the basis matrices are either even or odd under time reversal.
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If a given irreducible representation is n-dimensional, then there are n

basis matrices of rank n, of which n(n-l)/2 are pdd under time reversal and

n(n+l)/2 are even. The formulation given here is quite general. When applied

to the development of phenomenological Hamiltonians for solids, space groups

must be used, whereas for molecules point groups are used.

A general expansion for degenerate or nearly-degenerate states (whether

vibrational or electronic) is obtained by use of angular momentum matrices L.

5 -. 6 -1Use of these basis matrices is common for electronic E vs k or Phonon W vs q

in crystals and was first introduced for molecular rotational Hamiltonians by

Landau and Lifshitz. 7 The rotationol Hamiltonian for the vibrational state

characterized by the angular momentum quantum number I taken to order (2n) in

the angular momentum matrices I is designated by j(Qn) and is given by

(2n) ~ (it
i ~2n 2t }3r

(2) ~ ) a (iaXv(~~) j L F M)
-o -o v-o rI

(3)

The parameters of the expansion a()(j,X,v) are indexed according to symmetry
ri

type r i and to the three indices vX, and v. where P denotes the exponent of

angular momentum J,X the exponent for angular momentum L), and V the

exponent for the product (3 • )- J(J+l) where j(j+l) is the eigenvalue of J
J(X') ()are

The symmetrized combinations of angular momentum matrices Jra

labelled according to symmetry type r1 and to the order of the basis function X'.

Explicit symmetrized linear combinations corresponding to Td symmetry are given by

Altmann and Cracknell8 for O'l12. The curly bracket }A indicates that

symmetrized combinations of Jr) and r - 2v)() are taken so that

a scalar Hamiltonian results and the non-commuting quantum mechanical operators

are symmetrized. The prime on the sumuation over X denotes the constraint

that I + u - even and the sum over v is cut off at the largest integer in (V/2).



Further constraints on the summations in Eq. (3) are presented below. These

constraints depend on the properties of the symmetrized basis functions jT,( )

which are now discussed.

The symmetrized products of angular momentum matrices iri(L ) span

the vector space appropriate to angular momentum £ and are determined by the

dimension of the set of levels. For example, for a non-degenerate level, only

one matrix is needed, the unit matrix (1), so that JA,(0) (& ) ) F (1)

for A = 0. For a 3-fold degenerate level, £ = I in Eq. (3) and 9

basis functions are required for span the vector space. These basis functions

are found from the direct product of the symmetry type F1 for Z=l, namely

F1 x F1 = A I + FI + E + F These 9 basis functions for Td symmetry

(X) -dWare given by j (L )) where k 1 and A = 0,1,2. The matrices -(L)

given by
4

0 000/ L) 1  0 (o

L( I  - 0 1 ,) L ()= 0 0 , i i0 0 (z
x (- i 0 Y 1 0 0 0 0 0

respectively, generate the 9 basis functions for a 3-fold degenerate level

with F, symmetry in the T group. The normalization is given byd

(A)+ (A)+ A +* 4A(
W} (j) in ()1 J)(5

SiA

where the sum is over all the irreducible representations that occur for

a given X, J -J = J and the curly bracket denotes a scalar product of the

symmetrized basis functions. For A , 5, multiple occurrences of a given

irreducible representation are found, as for example F and Fl, for A

and F2 and F2, for A - 6. Thus, if A or (p- 2v) in Eq. (3) exceed 4, then

the sum over representations must include multiple occurrences such as F1

and F1 , for A - 5, and F2 and F2, for A - 6. Similarly if L > 2 in Eq. (3),
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then X will exceed 4 and multiple occurrences of representations must again

by explicitly Included. Also note that the functions of J 1  (L ) for even

are even under time reversal, while the functions with odd A are odd under

time inversion.

Application of the general formulation is made to the various common

symmetry types for vibrational-rotational levels occurring for molecules with

Td symmetry. In particular for 1=0 (representing the ground state or a non-

degenerate vibrational state with either A1 or A2 symmetry (ibe, the v

vibrational state of methane which has A symmetry), then the only basis

matrix which enters Eq. (3) is jA ()(L (0 )
= 1. Thus the sum over symmetries

! .()-2v)

is restricted to those combinations of JAI M having A 1 symmetry. Time

inversion invariance further restricts the sum to P = even integer which is

written as 2m. Thus the most general rotation Hamiltonian for a non-degenerate

level is9'1 0

(2n) (2(m-V))

J~~oa (3(2~0~ m,O,V MA ( ().

X 0m=O VO AI[(+)VJ

Table 1 gives the number of a1 (p,,v) coefficients which occur in Eq. (3)

for I values in the range 0 < £ i 3, 0 1 V 10 and all allowed values of X,v.

In particular, for £=0, then X is restricted to X=0, and v is restricted to

0 9 V £ m. Table 1 then gives one non-vanishing term for m=0 (namely with

(00)
coefficient aAI (0,0,0), and one non-vanishing term for m=l (namely with

coefficient a A (0)(2,0,1)), since the symmetry type A1

Table I shows that for m-2 there are two non-vanishing terms in Eq. (6), and

these correspond to coefficients ajo'O)(4,0,0) and a A(0'0)(4,0,2). The

rotational Hamiltonian _P(2n)(1) obtained from Eq. (6) has precisely the
soaeiormas Hamiltonian u 100
same form as the Hamiltonian used previously by other workers, 9,10



The next important application of Eq. (3) to the vibrational-rotatlonal

7
spectrum for methane is to the V3 and V4 levels which have F2 symmetry and

are 3-fold degenerate (=I1). The Hamiltonian for Z=1 can be written for

11
levels with either F1 or F2 symmetry as:

1 2

(J)a (m,~v[J~~l1' { A(L )JA ()
11 M'O V=O 1 11

n-1 m (11) ( 1 (2(m-v)+l)
+ Y a Fl(2m+1,1,)[j(j+l)] { ({ L +F A

m=O 0 a 1 1 1 1

n m1 (m-v))E-i (L i)3
+m=l V=0 E~l(m )JJ")V A3 I A

n m-1 (1) 2 ,2 )[ j l ]V {j(2) ( ) (2(m-v)) (7)
Y aF F 2 m2v[J1] F2 )L F2 A1

m=lv=O 2 2 F A

in which the sum on X in Eq. (3) has been written explicitly. The first sum,

corresponding to X=O,is identical to the Hamiltonian in Eq. (6), except that
j(0) (+(1) (0) (0()
A1 (L ) is a (3x3) unit matrix, while JA1  L ) is the scalar 1. The

second term in Eq. (7) is for 1.l and time reversal symmetry restricts the

sum to odd powers of J as indicated since only Fi = F1 symmetry

(l) -(1))
occurs for J (L ). To obtain a scalar product with A1 symmetry, the

(11-2v) -).)
basis function J 1 (- (j) must have ri = F1 . The number of coefficients

occurring for each order m is found in Table I for £=l and F1 symmetry.

Similary for '=2, two symmetry types occur, namely E and F . and time reversal

symmetry requires even powers of J in the last two sums in Eq. (7). The

number of expansion coefficients is again found from Table 1 using the

entries listed under £1-, and E and F2 symmetries, respectively. The

Hamiltonian In Eq. (7) is identical to that used by Robiette et al. I11 1 2
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To treat the v 2 level in methane, it is necessary to write Eq. (3) for

L-2 which is appropriate for treating the coupled E and F2 vibrational modes. An

isolated E mode can be treated by the introduction of the 4 basis matrices Jr8)e

having ExE - A + A2 + E symmetry and given-by

1 2
(0) 1 0 (1)10

JA1I (d e) =(0 1 ,  JA2 (d e) = (0-1 )

(8)
2 ) (0 1) and J (2 (d) =0 0

E~ e 0 0 E* e 10

where the a index is used as a convenient label to indicate time inversion

and de refers to the part of the d-function that has E symmetry. The resulting

Hamiltonian appropriate to the V2 vibrational state of methane can then be

11
written as

(2n) n mn (2 (mV)
ee = Y (ee) (2m,O,V)[J(J+l) {j (d) (3_) A

m0V=O 1aml 1 e ) ' 1 1

n m (ee) (1) (2(_-v)+I)
+ I I a (2m+1,l,v)[j(J+l)]V{. 0)(de), JA (J) Am=l V=0 A2  2A21

A2 2

+n m 
( ))

Im=l I C (2m,2'v)[J(j+l)] E)(de E } A1

(9)

in which the proper linear combination of operators J has been

taken to preserve time inversion symmetry. The number of coefficients

ark (ee)(P,,v) corresponding to each value of V is listed in Table 2 under

ri -E, r - E and rk = Al, A2 or E. Further discussion of this table is

given below. The Hamiltonian given by Eq. (9) has also been used previously

to treat the v2 level of methane.
10

The present work makes it possible to simultaneously derive the coupling

between degenerate and nearly degenerate vibrational levels to various orders
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in J. The general formulation for this coupling is given below in the context

of the coupling between an E and an F2 (or FI) vibrational level. This

particular coupling block is important for the methane molecule and is present

in the Hamiltonian P2n2(J) for k -2 which contains the block e(2n)inteHmloino22 u-ee

given by Eq. (9). In Sectioniii is presented a perturbation approach that

reduces the number of expansion coefficients that must be used to yield energy

eigenvalues for a given order in the expansion.

The full expansion for k=2 in Td symmetry reduces to coupled E and F2 11

(or E and F ) vibrational states. The Hamiltonian for Z=2 is then written as:

(2n)() 2))

S"ee \ef

(2n)
0 -22 (J) )(10)

. (2n) (]i . (2n)()i

ef 0) ff

where the diagonal blocks are given by Eq. (9) foree and Eq. (9) for
X ff = 1 ' The diagonal blocks yield energies for uncoupled v2 and v 4

levels for methane. Since these levels are nearly degenerate, they are

strongly coupled, and this coupling is treated by the off-diagonal blocks

S(2n) 0
ef (J). The symmetry and functional form for these coupling blocks are

found by expanding the general Hamiltonian in Eq. (3) and then identifying

the resulting off-diagonal blocks with4V(2n)(). In this expansion the

_"(2)basis matrices L are 5 x 5 matrices appropriate to E- 2. The number of

expansion coefficients for each value of V (i.e. JO) is found in Table 2

under ri - E, r = F2. In this table blocks with the same symmetry are couplcd

for j- 0 (i.e. JO) and these terms are called Fermi coupling terms. 2  the coiiT'.ing

of two different blocks by terms linear in J are called Corolis coupling

j . ..
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2 (2n)()orepnigo 2haeoterms.2 Terms in the coupling block (J) corresponding to P " 2 have no

special designations, as do the terms corresponding to ji = 0,1. From Table 2

it is seen that Eq. (10) has no Fermi coupling terms and 1 Coriolis coupling

term. Table 2 also gives the number of terms which occur in the coupling

blocks for each P in the range 2 ( p 9 10. Also included in Table 2 is the

number of expansion coefficients associated with general coupling blocks of

ri and r symmetries; such coupling blocks occur in Namiltonians R U(J)

for k > 2.

~ 9 1C2 and presentedThe rotational Hamiltonians p reslte l

in this section have all been used to fit the rotational levels for the

vibration states in the methane molecule. The total number of coefficients

which is required for the 2nth order phenomenological Hamiltonian is given

in the first 3 lines of Table 3. Thus we see that for the uncoupled vI, v2'

V39 and v4 levels the 8th order Hamiltonians have 11,26,48 and 48 expansion

coefficients respectively. The applications of phenomenological Hamiltonians

that have previously been made to methane have not been able to fit the

experimentally measured levels over the full range of j quantum numbers

12
that are experimentally accessible. Various schemes have been proposed to

improve the agreement between the experimental data and the phenomenological

Hamiltonians, and these schemes have generally involved inclusion of coupling

terms between nearly degenerate vibrational states. The number of coefficients

listed for the coupled vibrational levels on the last 3 lines of Table 3

assumes that the coupling terms are included to the same order in J as in the

diagonal blocks. In application of these equations to a physical problem,

the magnitudes of the coupling parameters are such that they often can be

treated in perturbation theory following the formulation given here. In

addition, a somewhat different type of perturbation theory, based on
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approximate spherical symmetry for the molecule (a jellium approximation for

the unperturbed molecule), can be useful in certain physical situations. This

type of perturbation approach is presented in the next section.

III. Jellium Perturbation Model

The formulation of the phenomenological Hamiltonian in Section II,

though mathematically correct, is often inconvenient to apply because of

the large number of coefficients ar (p,X,v) that must be determined from

experiment. In this section, a perturbation theory approach is presented

which yields a more convenient form of the phenomenological Hamiltonian

specific to a given molecule. In this formulation, a jellium model with

spherical symmetry is assumed for the zeroth order Hamiltonian, and the

specific symmetry is introduced by a perturbation term with the proper

symmetry. For example, the perturbation theory for a molecule with Td

symmetry would be written as

0(1n) . [g(2n) +,[(
Y Z91 91[Z(U ITd

in which the unperturbed zeroth order Hamiltonian has full rotational

symmetry and is written as [ y ]n)o and the perturbation Hamiltonian is

written as [ o, ]Td" A discussion of each term in Eq. (11) is now presented.

The assumption of spherical symmetry for [ 2n I implies that all

expansion parameters a (,,) in Eq. (3) for a given order p are equal, independent

of symmetry type ri, so that the expansion parameters for the unperturbed

term are written as

((1)

[ar(£) (,A')Io = 6,_2 a ( £ ( ) (12)

This assumption and Eq. (3) enables one to write the unperturbed Hamiltonian as
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(2n) M~2.{~4 99)
(Y. 9. 1 (J)] 1, o (V) [j(j+lfly G.4<, (J9. ) (13)

in which Q -L(Z J) is defined by

r i

Using the properties of spherical harmonics, the sum in Eq. (14) can be

carried out to give

-(9,

inwhchk(() . ) - i(+)(+) X2PX L12(5

where PX(z) is the Legendre polynomial of order X. We further note that

when L J in Eq. (15), the function J) reduces to (J • )

consistent with Eq. (5). The jellium approximation thus leads to level

orderings and degeneracies appropriate to vector sums of the angular momenta

L + J with quantum numbers j+Z, j+Z-i .... J-Z. The (22+1) x (2t+1)

Hamiltonian defined by Eq. (13) has preciqely the same block form as the

Hamiltonian of Eq. (3) with Td symmetry, except that the expansion coefficients
It

ari(vi,Av) are constrained by Eq. (12). In this way, a major reduction in

the number of expansion coefficients is achieved. The number of independent

coefficientsoW) (v) in Eq. (13) is listed in Table 4 according to index I

and order of the Hamiltonian 2n, where A < 2f and v is the largest integer

less than or equal to (n-A/2). As an example, for 1-0, truncation of the

Hamiltonian at J6 results in four expansion parameters, written as a (000)(M;

v-0,1,2,3. To obtain off-diagonal blocks in the Hamltonian with all the

distinct symmetry types that occur in Td symmetry when the perturbation

term in Eq. (11) is introduced, the expansion of the jellium Hamiltonian of

Eq. (13) must be carried to terms n .
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Referring again to Eq. (11), the perturbation Hamiltonian [ l Td

can be written explicitly using Eq. (3) for 0 : 5 n. To yield contributionr

to the energy of order 2n, the perturbation Hamiltonian is truncated at order n.

Thus, when the perturbation energy is calculated for levels that are split by

an interactions with Td symmetry, the coupling blocks, taken to order Jon

the off-diagonal positions of the Hamiltonian, yield contributions to the

block-diagonal terms of order J , which is of the same order as the jellium

Hamiltonian. The coefficients in the perturbation Hamiltonian are written as

ar (p;A,v), and are cataloged by symmetry type ri , in the same way as the
(Li) (ii)

ar1  (p,X,v) coefficients of Eq. (3). The ari coefficient however dffers

from the art coefficients insofar as thea are constrained to yield

the spherically symmetric o A')(v) when summed over all symmetry types

S+(X +2v, X, v) = n M(v) (16)rl

where n is the number of distinct representations.r

The large reduction in the number of expansion coefficients for the

coupled vibrations represented by Eq. (11) relative to the general form of

Eq. (3) is shown explicitly in Table 5. In particular the Z=2 Hamiltonian

appropriate to the coupled v2 P V4 vibrational states in methane can be

modelled using Eq. (11) with 39 coefficients to 8th order which is to be

contrasted to 114 coefficients for the full Td symmetry expansion to 8th

The jellium perturbation theory developed in this section gives a

major reduction of expansion coefficients, especially for L ! 2 as shown

in Table 5, These higher angular momentum states are directly applicable

to combination and overtone vibrational states in methane as is detailed

In the next section.
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IV. Proposed Application of Jellium Model to Methane

Based on the perturbation theory developed in the last section, we

now proceed to outline an approach to the Hamiltonian for the methane levels

which focusses on those groups of states that lie in approximately the same

frequency range. An application of the jellium perturbation expansion to the

coupled v2, V4 modes in methane was carried out by Prof. A.G. Robiette using

his collected experimental data set for these levels. The results are

quoted in the footnote to the table 5. Prof. Robiette achieves somewhat

better fits to the experimental data by judicious selection of certain terms

in the exact Hamiltonian of Eq. (10).

All the vibrations of the jellium molecule can be approximately

specified in terms of the three fundamental vibrations which are specified

by Z = 0.1 and 2. The state of the jellium molecule is then denoted by a set

of 3tintegersn=(n, n1 , n2) which specify how many quanta nI are present

in each of the three 9 states. When either harmonics and/or combination

modes are present, it is necessary to use a vector model to obtain the total

vibrational angular momentum quantum number 4 . The jellium model Hamiltonian

is written in terms of , as are the corresponding energy levels given on

the left side of Table 6 and denoted by n and . We note from Table 6

that in ihe methane molecule there are a number of accidental near-degeneracies;

more specifically many of the vibrations are such that the methane levels

-1
occur in approximate multiples of 1450 cm , as emphasized by the grouping of

levels given in Table 6. Thus the approximate position of the jellium

vibrations in methane follow the empirical relations given by

:(n,) 1450 [n(n + n- n cm -  (17) i

0 "9
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Thus the ground state (000) fort= 0 is isolated, doesn't interact strongly

with any other state and remains non-degenerate when the perturbation with

Td symmetry is introduced. The (001) jellium state for, = 2 has 5

-i
degenerate vibrational levels at 1450 cm and gives rise to a coupled

Hamiltonian having the form of Eq. (13) and this level splits under the Td

perturbation of the form of Eq. (1) into a 3-fold level with F2

symmetry and a higher lying 2-fold

level with E symmetry. The next set of states at about 2900 cm- consists

of the (100) level with T= 0, the (010) 3-fold degenerate level withl= I

and the (002) level with = 4,2, and 0. The (002) overtone for £ = 2

would according to the vector model correspond to = 4,3,2,1,0 but the

odd values of Ido not occur because these states are odd under the

permutation of identical particles, and phonons are Bose particles. The

-1
Hamiltonian for the coupled jellium states with energies near 2900 cm

Is written as + |n9 n, 9t 429oF = H [ Io
~~2900'a \~ ')(8

containng 5 x5 = 25 13 1id s
containing 5 x 5 = 25 blocks which are labelled by the n indices

listed in Table 5 and enumerated explicitly above. The most important

coupling terms are those for1= 4, (which contains Fermi coupling as the

leacvng term in the expansion) andS ' ± 1 (where the leading term in

the expansion represents Coriolis coupling). The introduction of the

perturbation with Td symmetry follows the perturbation theory of Eq. (11).

The resulting splitting of the jellium levels on the left hand columns of

Table 6 are indicated in the right hand columns of Table 6, in terms of

the appropriate irreducible representations of Td, the number of phonons

with mode frequencies vV 2, V3 and v 4 and finally the experimental values of the mode

2
frequencies wr,(ni).

LiA
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-1
The groupings of levels near 4350 cm are also indicated in Table 6,

together with the jellium model quantum numbers 'ind mode frequencies

.(), and also the corresponding level splittings which occur in Td

symmetry.

V. Summary

High symmetry molecules represent a theoretical challenge in molecular

physics for two essential reasons: (1) Molecules with cubic symmetry must

have at least 4 identical atoms (perhaps more) and hence 6 or more internal

vibrational degrees of freedom (i.e. a large number of modes) and (2) symmetry

forces some of these nodes to be degenerate. The high symmetry furthermore

increases the probability for near-degeneracies which further complicate the

calculation of the vibrational energies. The models for these molecules

must therefore make extensive use of group theoretical techniques.

This paper gives the most general group theoretical form for the

rotational Hamiltonian associated with the vibrational states of these high

symmetry molecules and the use of this Hamiltonian is illustrated for the

methane model. In addition a perturbation theory is developed based on a

jellium model for themolecule which enables one to significantly reduce the

number of expansion coefficients. The overtone and combination modes in

the high symmetry molecules occur in the same frequency region as the

fundamental vibrations and perturbation theory developed in this paper is

formulated to treat to the coupling between this extended set of nearly

degenerate modes in the methane molecule.
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Table I Number of Expansion Coefficients a a'i (W.' ,,v) inr
Eq. (3) for all allowed X and v in the range 0 X < 2Z. and 0 <. v /2

t r Number of Expansion Coefficients

__ _~- 0 1 2 3 4 5 6 7 8 9 10

0 A1  1 2 3 4 5

1 A 1 1 2 3 4 5

E 12 3 57

F1  2 4 6 9

F 21 2 4 6 9

2 A 12 2 4 6 8 10

A 2  11 2 3

E 2 4 6 10 14

F 1  2 4 1 8 2 12 4 18 6

F 2  2 1 4 2 8 4 12 6 18

3 A 13 3 6 9 12 15

A2  1 1 2 1 3 2

E 3 6 1 9 2 15 3 21

F4 8 2 16 4 24 8 36 12

F24 2 8 4 16 8 24 12 36
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Table 2 Number of expansion coefficients associated with the coupling terms
in the phenomenological Hamiltonian (a,b)

Number of Coefficients

r i  r symmctry Iz 0 1 2 3 4 5 6 7 8 9 10

A A A 1 2 3 4 10 5
A 2 A 2_ 

_ _ _ _ _ __ _ _ _ _ _

A1  A2  A 2  1 1 2 1 3 2

AI E E 1 2 1 3 2 5 3 7

F2 F2 1 1 2 2 4 4 6 69

A2  FI

A1 F1 t F1
A2  1F 2 1 4 2 6 4 9 6

E E A 1 1 2 3 4 10 5

A2  1 1 1 2 10 3 20

E 1 2 1e 3 20 5 30 7

E F1 F 2 1 4 2 6 4 9 6

E F 2  F2  1 1 2 2 4 4 6 6 9

F FI A 1 2 3 4 10 5

F2 F 2 E 1 2 10 3 20 5 30 7

F1  1 2 10 4 20 6 40 9 60

F 2 1 1 2 20 4 40 4 6* 7

F1 F2 A2  1 1 2 1 3 2

F 2  F E 1 2 1 3 2 5 3 7
F1  2 1 4 2 6 4 9 6

F2  1 1 2 2 4 4 6 6 9

a) r and r denote the symmetries of the coupled terms.

b) The terms which are odd under the time inversion symmetry are labelled with a
zero superscript when r-r . These terms are not allowed on the diagonal block

of the Hamiltonian, i.e. Eqs. (6), (7) and (9) do not contain any terms that
are odd under time inversion. However, the off-diagonal interaction that
couples two modes of the same symmetry (e.g. the v3 and V 4 vibrational levels

in methane) would include the odd terms indicated in this table.
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Table 3 Total Number of Independent Expansion Coefficients

a(,C)(,sV) in the Phenomenological Td Rotationalr id

Hamiltonian Summed to V 2n

Number of Independent Constants

Vibrational Symmetry Dimension 2n = 2 4 6 8 10

A1 or A2 1 x 1 2 4 7 11 16

E 2 x 2 3 8 15 26 41

F1 or Fa) 3 x 3 5 13 27 48 781 2

(AVE) or (A2,E) 3 x 3 6 15 29 51 81

(A1 ,F2) or (A2 ,FP 1

4 x 4 8 21 44 79 129
(AIF ) or (A2,F2)

(E,F2 ) or (E,FI) 5 x 5 10 2S 62 114 189

a) The 2nth order rotational Hamiltonian used by iarious authors for the

V 3 and V4 states in methane includes in addition the A1 symmetry

combinations with p = 2n + 2. Hence their 2,4,6,8 and 10th order

Hamiltonians have 7,16,31,53 and 85 parameters respectively.

h.. --L
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Table 4 Total Number of Independent Coefficients o (v)a)
in the Jelllum Hamiltonian of Order 2n

Total Number of Coefficients for Order 2n

91 2n 2 4 6 8 10

0 2 3 4 5 6

1 4 7 10 13 16

2 4 9 14 19 24

3 4 9 16 23 30

a) The integers A and v are constrained by 0 9 X 4 2k

and 0 < v < {n -/ /2
) in which {n - X/2) is the

largest integer less than or equal to n - X/2.
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Table 5 Comparison Between the Total Number of Symmetry Allowed

Coefficients in the "Full" Phenomenological Hamiltonian

(Eq. (3)) and in the "Jellium" Perturbation Expansion of

Eq. (11).

Total Number of Coefficients for Order 2n

21 Type 3n - 2 4 6 8 10

0 full 2 4 7 11 16

jellium 2 3 4 6 7

1 full 5 13 27 48 78

jellium 4 8 12 19 25

2 full 10 29 62 114 189

jellium 6 15 a) 2 4 b) 39 53

3 full 17 50 ill 207 347

jellium 9 22 38 64 90

The weighted standard deviations of the fits to the v2 , v4 levels in methane are

a) 0.0056 cm- I1 fit to levels through J=12.

-1
b) 0.0205 cm fit to levels through J=20.

* A
*

It
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Table 6 Vibrational mode frequencies for C114 as suggested by a pertirbatlon
expansion based on a spherically symmetric unperturbed state.

Spherical Symmetry T Symmetry

modea )  Irred. Repr.b )  Position(cm - ) Irred. Repr. moded )  Position(cm- 
e )

n 4; W (n n VWr in

(000) 0 0.0 A1 [0 0 0 0] 0.0

(001) 2 1450 E [ 1 0 01 1:26.0

2F [0 0 0 11 1306.2

(002) 4 2900 A 1 + E (0 2 0 0] 3071.5

F1 + F2  [010 1] 2823.0

2600 A1  [0 0 0 2) 2600..'

(100) 0 2900 AI  [1 0 0 01 2914.2

(0 10)f) 1 3000 A2 x (FI) [0 0 1 01 3019.5

(003) 6 4470 AI + A2 + E [0 3 001 [4578]

LF1 + 2F2  [0 2 0 11 (43581

3 A2+F 1+F2  ?[0 1 0 2) 4123
3 4020 EA+F 2  [0 00 31 [39191

0 A1 I J

(101) 2 4300 5 E [1 1 0 01 [44401

{ F2  [1 0 0 11 4216.3

(01 1)f) 3 A2x(A2+F1+F2)  0
2 [A0 0 1 11 4313.2
1 A2x(E F) J 0 1 1 01 4546.0

a) A number representation is used in which the number of vibrational 
modes

for angular momentum 9 is written as nj and the set of modes by

n (no,nl,n2 ).

b) In the overtone modes (i.e. nt > 1), not all allowed values occur

because of the identical nature of the particles (phonons). The functions

must be even under the exchange of coordinates of identical particles.

c) This is a rough estimate of the mode position before the application 
of the

Tdperturbation. The indicated accidental degeneracy between the various

a is is not symmetry imposed and should be lifted within the spherical

approximation.
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d) The mode designation in Td symmetry Indicates. the number of vi modes by nV

and the set of modes by i = [n i, n'2, n 3, nV 4.

e) The modes positions are experimental measurements of F2 symmetry modes as

listed in Ref. 10 and also estimates based upon the multiples of the

fundamental frequencies shown in brackets.

f) The modes involving an odd number of Z = I vibrations when taken in Td
symmetry must all be considered as a direct product with A2.
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